
Chapter 2

Data Quantitative **Qualitative Tabular Graphical Tabular Graphical Methods Methods** Methods Methods • Frequency Distribution Histogram Ogive Relative Scatter Frequency Distribution Diagram Cumulative Relative Frequency Distribution

Distribution

Ungrouped Quantitative Data

- Each observation has an exact value
- The observations are either interval data or ratio data

Sanderson and Clifford End of Year Audit Times					
(days)					
12	14	19	18		
15	15	18	17		
20	27	22	23		
22	21	33	28		
14	18	16	13		

Grouped Quantitative Data

- Exact values of observations are not known.
- Values fall within an interval or group of values.
- The observations are either interval data or ratio data

Frequency Distribution (f)

A frequency distribution is a tabular summary of a set of data showing the frequency (or number) of items in each of several non-overlapping classes

Sanderson and Clifford				
Year-End Audit Times				
Class	Tallies	Class		
Limits		Frequency		
10 - 14	////	4		
15 - 19	///////	8		
20 - 24	/////	5		
25 - 29	//	2		
30 - 34	1	1		
Total Frequency 20				

Relative Frequency Distribution (rf)

Sanderson and Year-End Audit
Class Limits Class
(days) Frequency

of data showing the aber) of items in each orlapping classes

Relative Frequency Distribution (rf)

$$rf_i = \frac{f_i}{n}$$

Where rf_i is the relative frequency of class i f_i is the frequency of class i n is the total number of observations

Sanderson and Clifford Year-End Audit Times					
Class Limits	Class	Relative			
(days)	Frequency	Frequency			
10 - 14	4	=4/20	0.20		
15 - 19	8	=8/20	0.40		
20 - 24	5	=5/20	0.25		
25 - 29	2	=2/20	0.10		
30 - 34	1	=1/20	0.05		
	20		1.00		

Cumulative Frequency Distribution (cf)

Cumulative Relative Frequency Distribution (crf) $crf_i = \frac{cf_i}{n}$

$$crf_i = \frac{cf_i}{n}$$

Sanderson and Clifford Year-End Audit Times							
Class	Class	Cumulative		Cumulative Relative			
Limits	Frequency	Frequency		Frequency			
10 - 14	4	=4	4	=4/20	0.20		
15 - 19	8	=4+8	12	=12/20	0.60		
20 - 24	5	=4+8+5	17	=17/20	0.85		
25 - 29	2	=4+8+5+2	19	=19/20	0.95		
30 - 34	1	=4+8+5+2+1	20	=20/20	1.00		
	20						

True Class Limits

lower true class limit = lower class limit - half unit upper true class limit = upper class limit + half unit

Class Limits

the starting and ending values for a particular class. However, when does one class truly end and another begin?

Midpoint

$$M_i = \frac{Upper\ Class\ Limit\ +\ Lower\ Class\ Limit\ }{2}$$

Definitions

Class Width

 $\frac{Approximate}{Class \ Width} = \frac{Largest \ Value - Smallest \ Value}{Number \ of \ Classes}$

Unit (unit of measure)

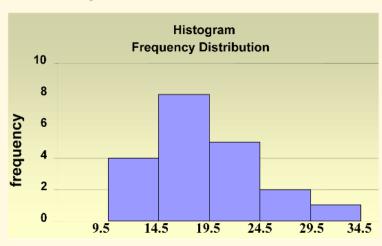
the smallest resolution of data that is measured.

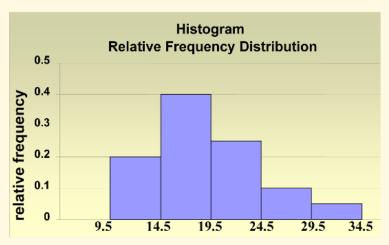
Examples
housing is measured in \$1,000
cars are measured in \$100
valve diameters are measured in .001"
Text Example: 1 day

Half Unit
(.5 * Unit)

Number of Classes

the number of groups or intervals required to contain the data. The classes are both exclusive and exhaustive.


A technical method for estimating the number of classes is called Sturges' Rule: number of classes = 1 + 3.322 Log(n)


number of classes = $I + 3.322 \log(20)$ = I + 3.322*I.30I = 5.32202Iround number of classes to either 5 or 6

Construction of Graphs

Histogram

- · use true class limits
- · use frequency or relative frequency
- · adjacent bars on the histogram touch
- width of bars are uniform indicating a consistent class width
- use only with quantitative data, therefore, it is different from a bar chart which can use qualitative data

Ogive - Cumulative Distribution

- · use true class limits on the horizontal axis
- use cumulative frequency or cumulative relative frequency
- for each class plot at the true upper class limit a point corresponding to the cfi or crfi
- for the first class plot at the true lower class limit a point on the horizontal axis
- · connect the dots with a straight line

