Chapter 3

Ungrouped Data

Measures of Location

- Mean
- Median
- Mode
- Percentile

Measures of DispersionRange / IQR

- Average Deviation
- Variance
- Standard Deviation
- Coefficient of Variation

Measures of Relative Location

- z-Score
- Chebyshev's Theorem
- Normal distribution

Paired Observations

Grouped Data

Measures of Location

- Mean
- Median
- Mode
- Percentile

Measures of Dispersion

- Variance
- Standard Deviation

Summation Notatation

 $\sum_{i=1}^{n}$

The purpose of the summation notation is to show the summation of a series of values, variables, or functions in a simplified or generalized manner.

Values are given in a subscripted manner:

• If we call the category X then we would refer to the age of the first individual as XI, the second as X2, and so on.

Ungrouped Data

i	X _i	X_{i}	X_i^2	$(X_i - \overline{X})$	$(X_i - \overline{X})^2$
1	X ₁	15	225	2.875	8.265625
2	X ₂	10	100	-2.125	4.515625
3	X ₃	5	25	-7.125	50.765625
4	X ₄	9	81	-3.125	9.765625
5	X ₅	14	196	1.875	3.515625
6	X ₆	20	400	7.875	62.015625
7	X ₇	6	36	-6.125	37.515625
8	X ₈	18	324	5.875	34.515625

$$n = 8$$

$$\sum x_i = \frac{\sum x_i^2}{\sum x_i^2} = \frac{\sum x_i}{n}$$

$$s^2 = \frac{n \sum x_i^2 - (\sum x_i)^2}{n(n-1)}$$

$$\sum (x_i - \overline{x})^2$$

$$\sum x_i^2 \neq \left(\sum x_i\right)^2$$
 Why?

U 20 18 324 n = 8 $\overline{x} = \frac{\sum x_i}{n}$ $s^{2} = \frac{n \sum x_{i}^{2} - (\sum x_{i})^{2}}{n(n-1)}$ $s^2 = \frac{\sum (x_i - \overline{x})^2}{n - 1}$

-0.123

5.875

34.5

Grouped Data

fi	M_{i}	f_iM_i	$f_i M_i^2$
5	10	50	500
9	20	180	3600
20	30	600	18000
8	40	320	12800
6	50	300	15000
2	60	120	7200

$$n = \sum f_i$$

$$\sum f_i M_i =$$

$$\sum f_i M_i^2 =$$

$$s^{2} = \frac{n \sum f_{i} M_{i}^{2} - (\sum f_{i} M_{i})^{2}}{n(n-1)}$$

Parameter - a descriptive measure of a population **Statistic** - a descriptive measure of a sample

Description	Sample	Population
size	n	N
mean	\overline{X}	$\mu_{_{2}}$
variance	s^2	σ^{z}
standard deviation	S	σ
proportion	$\overline{ ho}$	ho
slope	b_1	$oldsymbol{eta_{\!1}}$
covariance	S_{XY}	$oldsymbol{\sigma}_{xy}$
Correlation Coefficien	$t r_{xy}$	$ ho_{xy}$

Did vou know

€	s-	U
d deviation	S	σ
on	$\overline{ ho}$	ho
	b_1	$oldsymbol{eta_{\!\scriptscriptstyle 1}}$
nce	S _{xy}	$oldsymbol{\sigma}_{\scriptscriptstyle xy}$
ion Coefficient	r_{xy}	$ ho_{xy}$

Did you know...?

Brain Drain? Graduate outcomes for the University of Nebraska at Kearney Nebraska Workforce Development (2006)

- 69% of the 2003-2004 UNK graduates were employed in NE
- 64% of the undergraduate and 84% of the graduates work in NE
- Highest annual earnings is in Operations Management \$35,437 (compared to all UNK)
- UNK Management graduates have the highest percent of graduates working in Nebraska.