

Interval Estimation of a Population Mean: Large-Sample Case
2.9
Sampling Error ≤
✓ Probability Statements about the Sampling Error
← 🔮 ✓ Calculating an Interval Estimate:
- Large-Sample Case with σ Known
– Large-Sample Case with σ Unknown
200-9

Sampling Error

- Sampling Error = $|\overline{x} - \mu|$

00000 \checkmark The absolute value of the difference between an 000

unbiased point estimate and the population

parameter it estimates is called the sampling error. 0

Probability Statements About the Sampling Error 0 \checkmark Knowledge of the sampling distribution of $\ \overline{x}$ enables us to make probability statements about 0 the sampling error even though the population . ő mean μ is not known. 9 ✓ A probability statement about the sampling error ő is a precision statement.

Interval Estimate of a Population Mean: Large-Sample Case $(n \ge 30)$
$\checkmark \text{ With } \sigma \text{ Known} \qquad \overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
where: $1 - \alpha$ is the confidence coefficient
$z_{\alpha 2}$ is the z value providing an area of
$\alpha/2$ in the upper tail of the standard
normal probability distribution
$\sqrt[]{With \sigma Unknown} \qquad \overline{x} \pm z_{\alpha/2} \frac{s}{\sqrt{n}}$
where: s is the sample standard deviation

• The Buckle, Inc • Interval Estimate - unknown population variance Determine a 90% interval estimate for the mean annual income of the Determine a 90% interval estimate for the mean annual income of the individuals in the marketing area of the new location. A survey of size 64 is performed resulting in a sample mean income of \$21,100 and a sample standard deviation of \$5000. $\overline{x} \pm Z_{\alpha/2} \frac{s}{\sqrt{n}} \qquad \overline{x} \pm Z_{\alpha/2} S_{\overline{x}} \qquad S_{\overline{x}} = \frac{s}{\sqrt{n}} = \frac{s}{\sqrt$ $Z_{\alpha/2} =$ -

